بررسی کارایی مدلهای نروفازی، شبکه عصبی و رگرسیون چندمتغیره در پیش بینی مصرف انرژی کشور
Authors: not saved
Abstract:
This article doesn't have abstract
similar resources
واکاوی کارایی روش های مبتنی بر شبکه های عصبی مصنوعی و رگرسیون خطی چندمتغیره در پیش بینی کشند
پیشبینی تغییرات کشند، بهدلیل اهمیتی که در برنامهریزیهای ناوگان دریایی و نظامی، حمل و نقل و کشتیرانی، طراحی بنادر و سایر مسایل مرتبط با امور دریا دارد؛ از دیرباز مورد توجه بوده است. هدف این مطالعه بررسی عملکرد مدلهای شبکههای عصبی پیشخور با 3 الگوریتم یادگیری کاهش شیب، شیب مزدوج و لونبرگ-مارکوارد در پیشبینی ساعتی تغییرات کشند است. بهعلاوه در تحقیق حاضر، نتایج حاصل از مدل رگرسیون خطی چندم...
full textتخمین سرعت نفوذپذیری پایه با استفاده از مدلهای نروفازی، شبکه عصبی و رگرسیون خطی چندمتغیره
ننفوذ یکی از مهمترین مشخصههای فیزیکی خاک است که اندازهگیری مستقیم آن دشوار، زمانبر و پرهزینه میباشد. هدف از این پژوهش تخمین سرعت نفوذپذیری پایه با استفاده مدلهای نروفازی، شبکة مصنوعی و رگرسیون خطی چند متغیره است. بدین منظور، در 100 نقطه در منطقه دهگلان استان کردستان سرعت نفوذپذیری پایه با استفاده از استوانه مضاعف اندازهگیری شد. ویژگیهای فیزیکی خاک (تخلخل، جرم ویژه ظاهری، شن، سیلت و رس) ...
full textکارایی شبکه های عصبی، رگرسیون لجستیک و تحلیل تمایزی در پیش بینی نکول
مدل های آماری مختلفی برای پیش بینی و طبقه بندی در علوم وجود دارد. روش های آماری و اقتصادسنجی نظیر رگرسیون، تحلیل تمایزی، سری های زمانی، رده بندی و دیگر روش ها، بر اساس متغیرها و اطلاعات موجود برای پیش بینی و طبقه بندی یک موضوع خاص به کار می روند. مدل های آماری متأثر از مفروضات و محدودیت های زیادی هستند، بدین لحاظ اخیرا شبکه های عصبی به عنوان شیوه ی نوین پیش بینی به دلیل عدم نیاز به ...
full textمقایسه روشهای نروفازی، الگوریتم ژنتیک، شبکه عصبی، و رگرسیون چندمتغیره در پیشبینی شوری خاک (مطالعه موردی: شهرستان اردکان)
در سالهای اخیر از روشهای غیرمستقیم برای برآورد شوری خاک استفاده میشود. بدین منظور، در این پژوهش ششصد نمونة جمعآوریشده از منطقة اردکان آزمایش شد و قرائتهای افقی -عمودی دستگاه القای الکترومغناطیس و پارامترهای سطح اراضی ـ شامل شاخص اراضی، شاخص خیسی، و انحنای شیب ـ به عنوان ویژگیهای زودیافت استفاده شد و میزان شوری خاک به صورت وزنی در اعماق 30 و 100 سانتیمتری به عنوان ویژگیهای دیریافت تخمین...
full textتحلیل عدم قطعیت مدل های شبکه عصبی و نروفازی در پیش بینی جریان رودخانه
پیش بینی آورد رودخانه در مدیریت منابع آب از اهمیت فراوانی برخوردار است، اما به دلیل عدم قطعیت بالا در عواملی که فرآیند بارش- رواناب را سبب میگردند، همواره با مشکلاتی همراه بوده است. یکی از روشهایی که میتواند این مشکل را تا حدی کاهش دهد، تحلیل عدم قطعیت پیشبینیهای انجام شده میباشد. این تحلیلها در مدلهای آماری سابقه طولانی دارند، ولی برای مدلهای شبکه عصبی و نروفازی کمتر مورد استفاده قرا...
full textپیش بینی سیل با استفاده از شبکه عصبی مصنوعی و رگرسیون چندمتغیره غیرخطی (مطالعه موردی: طالقان)
با توجه به کمبود ایستگاه های اندازه گیری در کشور، لزوم استفاده از مدل های تجربی برآورد دبی حداکثر لحظه ای بسیار ضروری است. در این پژوهش از دو مدل شبکه عصبی و رگرسیون چندمتغیره غیرخطی برای پیش بینی دبی اوج در حوزة آبخیز طالقان استفاده گردید. با استفاده از آمار دبی های متوسط حداکثر روزانه و بارش های متناظر، یک روز قبل و پنج روز قبل و مجموع بارندگی پنج روزه و همچنین دمای میانگین ماهانه در واحدهای ...
full textMy Resources
Journal title
volume 12 issue 46
pages 43- 64
publication date 2012-11-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023